An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry.
نویسندگان
چکیده
Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42-) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42- aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions.
منابع مشابه
Sensitivity of Tropospheric Chemical Composition to Halogen-Radical Chemistry Using a Fully Coupled Size-Resolved Multiphase Chemistry/Global Climate System I: Halogen Distributions, Aerosol Composition, and Sensitivity of Climate-Relevant Gases
Observations and model calculations indicate that highly non-linear multiphase atmospheric processes involving inorganic Cl and Br significantly impact tropospheric chemistry and composition, aerosol evolution, and radiative transfer. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was investiga...
متن کاملSub-Atmospheric Distillation for Water (1) + Dimethyl Amino Ethyl Azide (2) Mixture
Dimethyl amino ethyl azide (DMAZ) is a good replacement for hydrazine group in space programs. This chemical was purified from water (1) + DMAZ (2) mixture in sub-atmospheric distillation column due to thermal sensitivity of DMAZ. For designing of the column, it is necessary to have vapor-liquid equilibrium data. In this article, T-x,y and y-x diagrams were obtain...
متن کاملHydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study
Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...
متن کاملNanofluid Condensation and MHD Flow Modeling over Rotating Plates Using Least Square Method (LSM)
In this study, nanofluid condensation and MHD flow analysis over an inclined and rotating plate are investigated respectively using Least Square Method (LSM) and numerical method. After presenting the governing equations and solving them by LSM, the accuracy of results is examined by the fourth order Runge-Kutta numerical method. For condensation, modeling results show that the condensate f...
متن کاملAtmospheric warming induced changes in future rainfall and implications on water and agriculture in India
The projected rainfall change under various scenarios is likely to have both positive and negative implications on agriculture and water supply because in rainfall pattern across the country. Rise in rainfall is seen over all states except Punjab, Rajasthan and Tamil Nadu, which show slight decrease in precipitation in the future scenarios. Marked increase in covering the Western Ghats and nort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 42 شماره
صفحات -
تاریخ انتشار 2016